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® Basic and Advanced Regulatory Control
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® Combined Feedforward-Feedback Control

® Example 1: Combined Feedforward-
Feedback Control of Distillation Column

® Combined Feedforward-Feedback Tuning
Methodology

® Model-Based Control and Controller Types

®* Example 2: Cooling Tower Water Quality
Composition Control
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% Basic Regulatory Control

* Primary Process Control Objective

® Controlled Variable (CV) stays within a
predefined limit around the setpoint
irrespective of routine disturbances that
routinely affect the control loop

= Feedback Control

¢ Single loop feedback control is
adequate to meet the primary control
objective for most processes

® Effect of disturbances is not taken into
account in advance
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= Basic Regulatory Control (BRC)

® Basic instrumentation and control
system hardware, software, and
configuration required to safely operate
the plant on a second-to-second basis

® Should be able to handle routine load
disturbances

® Includes sequential regulatory control
and batch logic if required

® Includes required equipment interlock
logic and safety, health &
environmental controls
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= Advanced Regulatory Control (ARC)

® Extends control system capability
beyond regulatory and sequential
control to move the process closer to
its economic optimum

® Typically implemented to:

<~ |Improve operating efficiency and
profitability

<~Increase plant production
<« Improve plant stability and operability

< Better reject routine control loop
disturbances
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= Advanced Regulatory Control (ARC)

® Coordinates or ties together control for
multiple loops

® Typical Advanced Regulatory Control
industrial applications:

<+~ Cascade control
<« Override control
<~ Combined feedforward-feedback control

<~ Model-based control (including Model
Predictive Control)

< Inferential composition control
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= Feedforward Control

¢ Sustained control error must have
enough economic impact to justify
higher desigh and implementation
costs

® Can minimize adverse effects of:

<~ Large magnitude/frequent input
disturbances

+To some degree significant process lag

¢ Effect of disturbance variable(s) on CV
must be measurable

® Cost/complexity trade-off
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e Feedforward-Feedback Control

= Why Use Combined Feedforward-
Feedback Control?

® Feedforward control only is not
practical because it requires:

<« Accurate modeling of the process

< Ability to predict and model the effect of
all possible disturbance variable(s) on
the primary controlled variable (CV)

® So Combined Feedforward-Feedback
control is generally used
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..........

= Steady-State Feedforward Control
® Most simple and direct approach
° No dynamic effects included

® Instantaneous correction applied to
manipulated variable

° May not achieve control objective if
dynamic effects are significant (and they
usually are...)
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Feedforward Control Types (Cont’d)
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= Dynamic Feedforward Control

® Takes into account:

<+ Process dynamics (usually most
significant)

< Disturbance dynamics
«+ Sensor dynamics
® Can be implemented by:

« Generic dynamic compensator (most
common)

<« Application-specific feedforward
control strategy and calculation
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Feedforward Dynamic Compensation
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= ‘Generic’ FFD-FDBK Dyn. Compensator
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e (Cont’d)

* Feedforward Dynamic Compensation —
Response of a Lead-Lag Dynamic
Compensator to Step Input Change
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WM "Example 1: Distillation Column Combined

“emere”  FFD-FDBK Control Process Schematic
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it General Preparation for Tuning

= BEFORE conducting any tuning exercises
work closely with the operations personnel to:

¢ Establish the control loop performance criteria

¢ Determine allowable operating and understand
safety limits for the control loop and other affected
variables

® Obtain any necessary operations work and safety
permits if required

= Irrespective of tuning method used:

® Familiarize yourself with the process (there is no
substitute for thorough process understanding!)

® Understand in detail the data acquisition and
control system and algorithms used including
optional features
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Feedforward Tuning Methodology

= Recommended Procedure

® ALWAYS conduct at least 1-2 process
response tests

i <« Using an appropriate input disturbance
T such as a step or pulse (symmetrical or
asymmetrical doublet pulse preferred)

«+Conduct process response tests at
different parts of the normal operating
range of the controlled variable

» Average the results, assess nonlinearity

® If cascades are present, conduct process

response test(s) and tune inner feedback
loop first

¢ Conduct process response test(s) and tune
the primary feedback controller
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= Recommended Procedure (Cont’d)

® Continuously monitor and record the input
disturbance variable (DV) and the primary
feedback controlled variable (CV)

® Put primary feedback controller influenced
by input disturbance (feedforward) into
Manual mode and allow the controlled
variable to reach steady state

¢ Manipulate the upstream variable that
causes the input disturbance (e.g. vessel
feed flow controller, level controller output,
etc.) to create a series of input steps or
pulses of varying magnitude and duration
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INDUSTRIAL PROCESS )
OPTIMIZATION o n

= Recommended Procedure (Cont’d)

® Observe effect of disturbance on the
primary CV and insure process response is
in direction expected and magnitude of
response is well above noise band

® Put primary feedback controller influenced
by input disturbance (feedforward) back
into Auto mode

® Allow primary controlled variable to reach
steady state at same setpoint

® If more than one input disturbance variable
(DV) influences the primary feedback
controller, repeat this procedure for each
DV




|N|].p|m.um I

,,,,, Q - Feedforward Tuning Methodology (Cont’d)

............

= Recommended Procedure (Cont’d)

® Perform process response test results
analysis for each DV

«Using a tuning or model identification
package [e.g., ExperTune, University of
Connecticut’'s (UConn) Control Station,

MathWorks MATLAB + System ID Toolbox,
etc.]

® Estimate input disturbance process gain
(including sign), deadtime, and first order
time constant

® Use feedforward tuning constant rule set* or
tuning and simulation package to obtain
feedforward gain, lead, lag, and if req’d
delay

® Commission and test combined

feedforward-feedback loop
*The author’s rule set follows in next slide
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i, Feedforward Tuning Methodology (Cont’d)

OPTIMIZATION

= Recommended Procedure (Cont’d)

® 1st pass feedforward tuning constant rule set

<+ Feedforward Gain = Load Disturbance
Process Gain*/Controlled Variable Process
Gain**

«Feedforward Lead = (1.3-1.5) x Controlled
Variable 1st Order Process Time Constant**

«Feedforward Lag = (1.1-1.3) x Load

Disturbance 1st Order Process Time
Constant*

<+ Feedforward Delay = Load Disturbance
Process Deadtime* - Controlled Variable
Process Deadtime** (ignore if less than 0)

*Normalized effect of load disturbance variable (DV) change on primary
process control var. (CV)

**Normalized effect of primary feedback controller manipulated variable
(MV) move on primary process control var. (CV)
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“emere”  F@a@dforward-Feedback Control Results

= Adding three combined feedforward-
feedback control loops with dynamic
compensation achieved:

° Routine solvent purification column
operation within environmental emissions

constraints
¢ Substantially reduced solvent loss
® Estimated savings:
«»~ $100K/year in solvent recovery

«»Unestimated $/year in avoidance of
environmental emissions excursion fines
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Model-Based Control
= What is Model-Based Control?

°* Embeds a process model in the control
algorithm to better achieve the control
objective

= Some Model-Based Control Examples
® Internal Model Control

< Smith Predictor with PID Feedback Control

® Adaptive Model-Based Control — Feedback
Controller Tuning Constants Online
Adjustment

® Adaptive Model-Based Control - Process
Model Parameters Online Adjustment

® Model Predictive Control

® Many Other Variants and Commercial
Products...
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Generic Model-Based Control Block

INDUSTRIAL PROCESS

u
enazes NP dagram

Disturbance

Variable (DV
Manipulated or DV’s)
Variable(MV [ T """ T T 7°7°7 1
Operator , I
or MV’s) |
Target Controlled :
(gPP or et Baced Variable (CV |
'S odel-Base ) :
—P) Controller or Process or CV’s) — » Measure.
Optimizer : : I
I
+ : \ A /
I
I . > Process | _ —» Disturbance
Updated | Model Estimation and/or
Model ' Model Adaptation
Parameters :
I

Note: the above diagram was extracted from Techniques of Model-Based Control,
Brosilow & Joseph ©2002 Prentice-Hall, and was modified by the presenter.
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INDUSTRIAL PROCESS

Smith Predictor with PID Feedback Control

“emzvo - - Block Diagram
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Note: the above diagram was extracted from Reg. & Adv. Reg. Control: Sys. Dev, H. L.
Wade ©1994 ISA and Fundamentals of Process Control Theory 3 e., P. W. Merrill
©2000 ISA, and was modified by the presenter.
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Generic Adaptive Model-Based Control

INDUSTRIAL PROCESS

—mze Block Diagram

Disturbance
Manipulated Variable (DV or

Variable (MV DV’s)
Operator or MV’s)
Target Controlled
SP or Variable (CV
(SP’s) Feedback or or CV’s()
—»| Predictive Process I » Measure-
Controller I I ment
Updated yY : :
ControlleN | :
Tuning : L —p Online |
Parameters I Process |
| e > |
Model & |
' Model ID &
Online Model
Controller Builder
and/or Model Updated 1
Parameters Process I
Calculati |
alculation Model :
A Parameters |

(=

Note: descriptions in italics = capabilities of more sophisticated controllers
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mzre - Fagtures of Interest

= MPC- class of model-based control
algorithms that compute a sequence of
manipulated variable (MV) moves in order to
optimize the future behavior of a plant

® Solves control and optimization app
mathematically online in real-time

® Uses linear dynamic models to predict plant
behavior (Feedforward)

® Corrects for mismatch between actual plant
behavior and model (Feedback)

® May include operating constraints
(constrained or unconstrained MPC)

® May include dynamic cost optimization
(objective) function
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How Model Predictive Control Works

INDUSTRIAL PROCESS
__OPTIMIZATION _
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Generic Unconstrained Model Predictive
e Gontrol Block Diagram
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Note: the above diagram was extracted from Advanced Control Unleashed, G. K.
McMillan et al ©2003 ISA, and was modified by the presenter.
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% Model Predictive Control Advantages

= Controls complex multivariable processes and
can handle:

® Large plant controller-related variable set
< Typical example: 100 CV’s/30 MV’s/10 DV'’s

® Interactive variable and integrating process
dynamics

° Long dead time and time constant processes

= Can (depending on ctir cap.) perform real-time
economic optimization

® Optimum SP range vs. single SP for each CV
® Includes raw material and product costs

= Achieves fastest plant production rate ramping
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Model-Based & Adaptive Controller

INDUSTRIAL PROCESS

Suppliers

= Model-Based (Non-Adaptive) Controller Supplier

¢ ControlSoft, Inc. MMC - Modular Multivariable
Ctir (2/3/0/0)

< http://www.controlsoftinc.com/mmc.shtml

= Adaptive Model-Based Controller Supplier

® Universal Dynamics Technologies BrainWave®
(1/1/3/0) + BrainWave® MultiMax (12/12/36/NA)

< http://www.brainwave.com/product/product index.html

= Adaptive “Model-Free” Controller Supplier

® CyboSoft™ (General Cybernation Group, Inc.)
CyboCon (12/3/3/NA)

< http://www.cybosoft.com/index.html
Note: (_/ /_/ ) = controller capability for CV’s/MV’s/DV’s/AV’s (AV=constraint)



http://www.controlsoftinc.com/mmc.shtml
http://www.controlsoftinc.com/mmc.shtml
http://www.brainwave.com/product/product_index.html
http://www.cybosoft.com/index.html
http://www.cybosoft.com/index.html
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Model Predictive Controller Suppliers

INDUSTRIAL PROCESS

= Model Predictive Controller Suppliers
® Aspen Technology DMCplus®(100°s/100’s/etc.)

< http://www.aspentech.com/

°* Emerson Proc. Auto. DeltaV™ Predict (4/4/4/4)

< http://www.easydeltav.com/

® Honeywell Profit® Robust Multivariable
Predictive Controller (200/100/100/300)

< http://www.acs.honeywell.com/ichome/

° Intelligent Optimization GMAXC™ (40/25/10/40)
< http://www.intellopt.com/GMAXC.htm

« 3" party S/W solution from Siemens Energy and
Automation Div. for APACS+ systems
(http://www.sea.siemens.com/process/default.html)

Note: (_/_/_/ ) = controller capability for CV’s/MV’s/DV’s/AV’s (AV=constraint)



http://www.aspentech.com/includes/product.cfm?IndustryID=0&ProductID=98
http://www.aspentech.com/includes/product.cfm?IndustryID=0&ProductID=98
http://www.easydeltav.com/pd/PDS_DV_Predict.pdf
http://www.acs.honeywell.com/ichome/rooms/DisplayPages/LayoutInitial?PageName=Software&Type=Category&ParentCatalogName=ICHome&CategoryName=Software&ParentName=acs_products_container&SL=1&L=1
http://www.intellopt.com/GMAXC.htm
http://www.sea.siemens.com/process/default.html
http://www.sea.siemens.com/process/default.html
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INDUSTRIAL PROCESS

“enare” - Composition Control Process Schematic
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Example 2: Cooling Tower Water Quality

INDUSTRIAL PROCESS

e (Gomposition Control — Process ldentification
Open Loop Process Response Test Results

RESPONSE OR

REACTION CURVE EXPERTUNE IDENTIFIED & VALIDATED

e — ORP PROCESS PROCESS MODEL: UNDERDAMPED*

” VAR.’s RESPONSE PROCESS WITH A SERIES

TO BELOW CO INTEGRATOR.

STEP CHANGE FOLPDT PROCESS GAIN = 0.24
PROCESS DEADTIME = 12 MINS

SERIES INTEGRATOR TIME = 5 MINS

f \ \ \
16.583 500 1000 1500 2000 2500 3000 3500 4000
100.

52.917

o CONTROL OUTPUT (CO) STEP CHANGE
(OPEN LOOP)
/co IS SENT TO A DOSING CHEMICAL
ADDITION CONTROL VALVE
POSITIONER
fl ENGR UNITS (% —TIME UNITS (secs)

of PV or CO range)

*The Laplace polynomial equation used to model and simulate this underdamped process in the
ExperTune Loop Simulator is: 1/(C0 + C1s + C2s? + C3s3): C0=4.2; C1=92; C2=670; C3=0.




[P0 PT 0
Example 2: Cooling Tower Water Quality

INDUSTRIAL PROCESS

—emzre Composition Control — Process Model Dev.
Simulated Process & Disturbance Models — Control

i ]
ALIO1
-
L7 Custom Process Input Form g| m Process Input Form
Construct Process and Disturbance Models Construct Process and Disturbance Models
TS T T ——— T F——— Process Model [ Disturbance Model i Zeros and Spans
|Underdamped Linear Model j
|NDn-SeIf Regulating (Integrating) Process j
Laplace Domain T Time Domain
Controller Output, CO Process VYariable. PY Disturbance, D
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Torelat
s(rye® + 200+ (s +1) Startup Value  [5on Startup Value  [gn0.0 Startup Value  [5op.0

Natural Period. Tpp 1263 time units
[Cramping Factor, £ p 0.8671 time units

Time Constant, Tp 0 time units Current Process Model

ki)

Lead Time, Tp, ] time units 0.13exp(-12.0s)
PV
Dead Time, S EXi] time units 5{159.525 2 +219s5+1)(5.00s+1)

MNumerical Solution Method

ne | Cancel Fast — '— Accurate

-~ |~ Custom Process Input Form

Construct Process and Disturbance Models

Process Model T

T Zeros and Spans

Overdamped Linear Model j

Laplace Domain T Time Domain

General Model Form

4 -8ns
Process Gain, Kp 150 = Eplep s+ e

First Time Constant, Tpy 0.0 time units (o s+ D(rpz s + Dieps s +1)
Second Time Constant, Tpg ,F time units

Third Time Constant, Tpg lﬂﬂi fime units Current Frocess hModel

Lead Time, Tp, ,007 time units 1.50exp(-13.0s)
BT 0 AmeuiE PV = 100s+1)(2.005+1)
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Daone Cancel Fast ————— J— Accurate
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Example 2: Cooling Tower Water Quality

Composition Control — Controller Dev.
Simulated PID & Model-Based Controller — Control

INDUSTRIAL PROCESS
OPTIMIZATION

~OeTans R P
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g\ |- 7Controller Design

Cantraller: ¥ Advanced [ Basic

PID with Smith Predictar =
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Tuning: Gain = 0.20, Resst Time = 120.0, Derv Time = 30,0, Filler Con = 0,10, Sampile Time = 0.05
Process Model: Gain{Kp) =024 T1=180.T2=00 TL=00TD =190
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INDUSTRIAL PROCESS

“emzre Gomp. Ctl Simulated Perform. — Load Pulse

Ctir: Plant Originally-Tuned 2-Mode PID - Disturb: 17 % Input Load Pulse Ctir: Optimally Tuned PID - Disturb: 17 % Input Load Pulse
Pmcc!éé Single Loop Cusiom Process Cont.: FID { P= RA, I= ARW, D= off, F = oll) Pmcc!éé Single Loop Cusiom Process Conl: PID { P= RA, |= ARW, D= Inleracting (meas), F= on)
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Tuning: Gain = 600, Reset Time = 120.0, Sample Time = 0.05 Tuning: Gain = 0.20, Resel Time = 120.0, Denv Time = 38.0, Filer Con = 0.10, Sample Time = (.05
Ctir: Optimally Tuned PID with Smith Predictor - Disturb: 17 % Input Load Pulse
Process: Single Loop Cusiom Process Conl.: PID with Smith Predicior
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Tuning: Gain = 0.20, Reset Tima = 120.0, Derv Time = 38.0, Filer Con = 0,10, Sample Time = 0.05
Process Model: Gain{Kp) =024 T1=180.T2=00, TL=0.0.TD =190
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ez Composition Control Results

= Optimal PID Control Tuning Results:

® Retuned with step and pulse response
testing using ExperTune

® Retuned loop reduced average ORP
Controlled Var. (CV) variance from +/- 20-
45% before retuning to ~ average of +/- 5%
after retuning

® Estimated savings:

< Avoidance of need to shut down the plant
and manually chemically clean heat
exchange equipment ~ once/year - $100K

+»$5K per year in reduced microbiocide
usage
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= Advanced Regulatory Control - globally
proven to provide major competitive
advantage if properly applied and maintained

® Combined Feedforward-Feedback control can
minimize the negative impact of routine
disturbances for high profit control loops

® Model-Based and Model Predictive Control
can handle difficult or complex applications
where single loop feedback control is not
adequate

® These techniques have been successfully
applied to greatly improve plant performance
for many decades

= Very capable commercial tools are now
s available to facilitate the process of moving
beyond single loop control
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