

Introduction

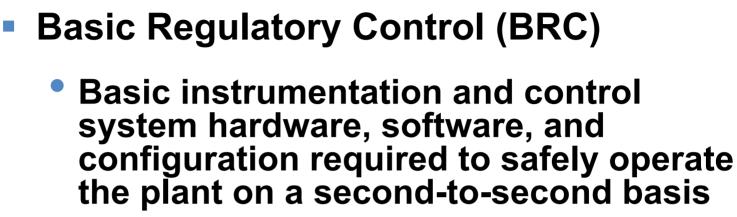
Beyond Single Loop PID Control: Model-Based and Combined Feedforward-Feedback Control

ISA Philadelphia Chapter David B. Leach Independent Consultant *INDUSTRIAL PROCESS OPTIMIZATION*

> March 19, 2003 © 2003 Industrial Process Optimization

OUTLINE

- Outline
 - Basic and Advanced Regulatory Control Definitions
 - Combined Feedforward-Feedback Control
 - Example 1: Combined Feedforward-Feedback Control of Distillation Column
 - Combined Feedforward-Feedback Tuning Methodology
 - Model-Based Control and Controller Types
 - Example 2: Cooling Tower Water Quality Composition Control
 - Summary


Basic Regulatory Control

- Controlled Variable (CV) stays within a predefined limit around the setpoint irrespective of routine disturbances that routinely affect the control loop
- Feedback Control
 - Single loop feedback control is adequate to meet the primary control objective for most processes
 - Effect of disturbances is not taken into account in advance

Basic Regulatory Control (Cont'd)

- Should be able to handle routine load disturbances
- Includes sequential regulatory control and batch logic if required
- Includes required equipment interlock logic and safety, health & environmental controls

Advanced Regulatory Control

- Advanced Regulatory Control (ARC)
 - Extends control system capability beyond regulatory and sequential control to move the process closer to its economic optimum
 - Typically implemented to:
 - Improve operating efficiency and profitability
 - Increase plant production
 - Improve plant stability and operability
 - Better reject routine control loop disturbances

Advanced Regulatory Control (Cont'd)

- Advanced Regulatory Control (ARC)
 - Coordinates or ties together control for multiple loops
 - Typical Advanced Regulatory Control industrial applications:
 - Cascade control
 - Override control
 - Combined feedforward-feedback control
 - Model-based control (including Model Predictive Control)
 - Inferential composition control

Feedforward Control

Feedforward Control

- Sustained control error must have enough economic impact to justify higher design and implementation costs
- Can minimize adverse effects of:
 - & Large magnitude/frequent input disturbances
 - To some degree significant process lag
- Effect of disturbance variable(s) on CV must be measurable
- Cost/complexity trade-off

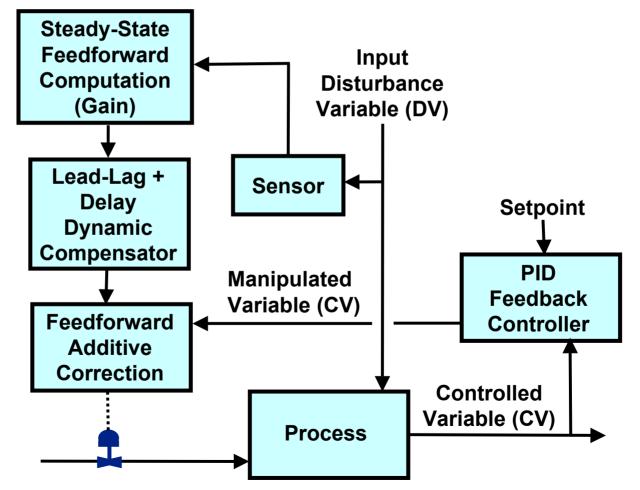
Feedforward and Combined Feedforward-Feedback Control

- Why Use Combined Feedforward-Feedback Control?
 - Feedforward control only is not practical because it requires:
 - Accurate modeling of the process
 - Ability to predict and model the effect of all possible disturbance variable(s) on the primary controlled variable (CV)
 - So Combined Feedforward-Feedback control is generally used

Feedforward Control Types

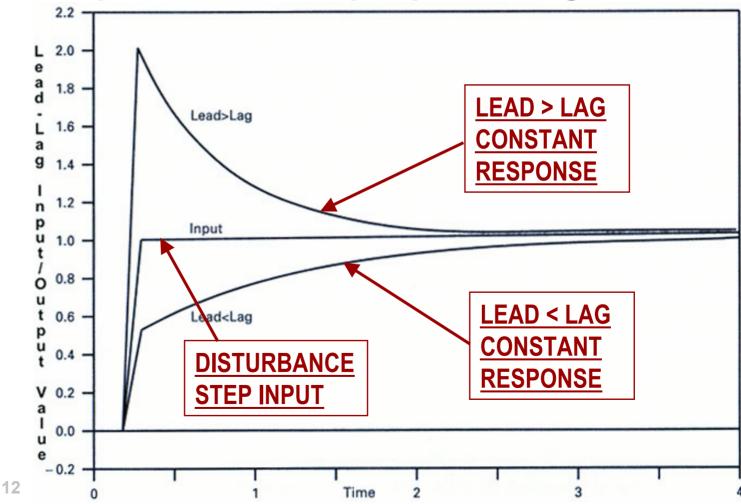
- **Steady-State Feedforward Control**
 - Most simple and direct approach
 - No dynamic effects included
 - Instantaneous correction applied to manipulated variable
 - May not achieve control objective if dynamic effects are significant (and they usually are...)

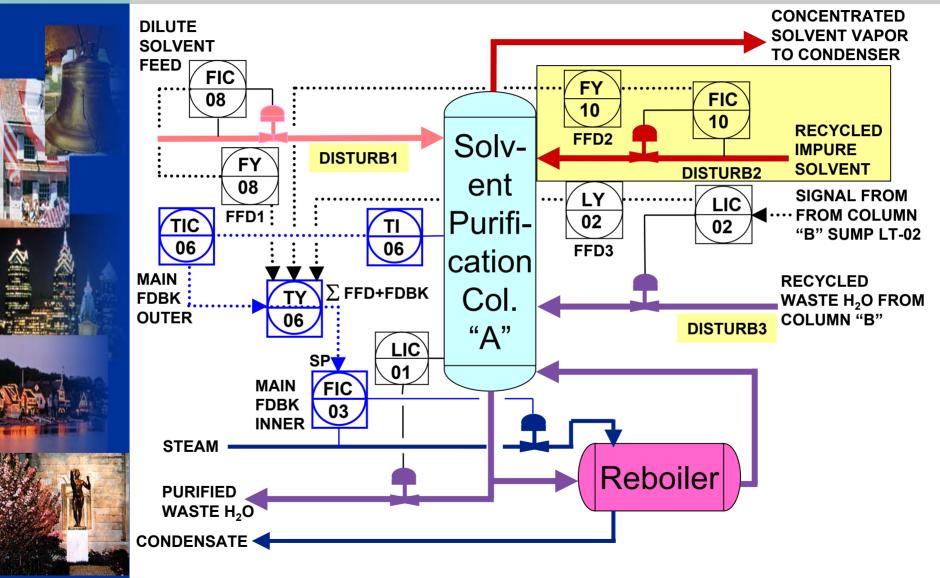
- **Dynamic Feedforward Control**
 - Takes into account:
 - Process dynamics (usually most significant)
 - Disturbance dynamics
 - Sensor dynamics
 - Can be implemented by:
 - Generic dynamic compensator (most common)
 - Application-specific feedforward control strategy and calculation



Feedforward Dynamic Compensation

'Generic' FFD-FDBK Dyn. Compensator


DYNAMIC FEEDFORWARD CONTROL APPLIED AS AN ADDITIVE CORRECTION TO PID FEEDBACK CONTROLLER OUTPUT



Feedforward Dynamic Compensation (Cont'd)

Feedforward Dynamic Compensation – Response of a Lead-Lag Dynamic Compensator to Step Input Change

Example 1: Distillation Column Combined FFD-FDBK Control Process Schematic

IND-PRO-OPTO

INDUSTRIAL PROCESS

General Preparation for Tuning

- Establish the control loop performance criteria
- Determine allowable operating and understand safety limits for the control loop and other affected variables
- Obtain any necessary operations work and safety permits if required

Irrespective of tuning method used:

- Familiarize yourself with the process (there is no substitute for thorough process understanding!)
- Understand in detail the data acquisition and control system and algorithms used including optional features

Feedforward Tuning Methodology

- ALWAYS conduct at least 1-2 process response tests
 - Using an appropriate input disturbance such as a step or pulse (symmetrical or asymmetrical doublet pulse preferred)
 - Conduct process response tests at different parts of the normal operating range of the controlled variable

> Average the results, assess nonlinearity

- If cascades are present, conduct process response test(s) and tune inner feedback loop first
- Conduct process response test(s) and tune the primary feedback controller

Feedforward Tuning Methodology (Cont'd)

- Recommended Procedure (Cont'd)
 - Continuously monitor and record the input disturbance variable (DV) and the primary feedback controlled variable (CV)
 - Put primary feedback controller influenced by input disturbance (feedforward) into Manual mode and allow the controlled variable to reach steady state
 - Manipulate the upstream variable that causes the input disturbance (e.g. vessel feed flow controller, level controller output, etc.) to create a series of input steps or pulses of varying magnitude and duration

Feedforward Tuning Methodology (Cont'd)

Recommended Procedure (Cont'd)

- Observe effect of disturbance on the primary CV and insure process response is in direction expected and magnitude of response is well above noise band
- Put primary feedback controller influenced by input disturbance (feedforward) back into Auto mode
- Allow primary controlled variable to reach steady state at same setpoint
- If more than one input disturbance variable (DV) influences the primary feedback controller, repeat this procedure for each DV

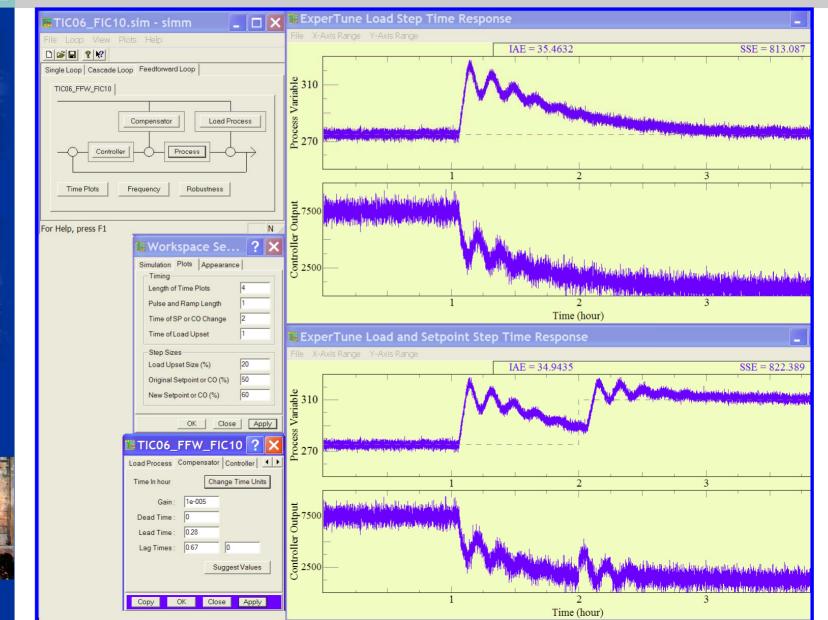
- Perform process response test results analysis for each DV
 - Using a tuning or model identification package [e.g., ExperTune, University of Connecticut's (UConn) Control Station, MathWorks MATLAB + System ID Toolbox, etc.]
- Estimate input disturbance process gain (including sign), deadtime, and first order time constant
- Use feedforward tuning constant rule set* or tuning and simulation package to obtain feedforward gain, lead, lag, and if req'd delay
- Commission and test combined feedforward-feedback loop

*The author's rule set follows in next slide

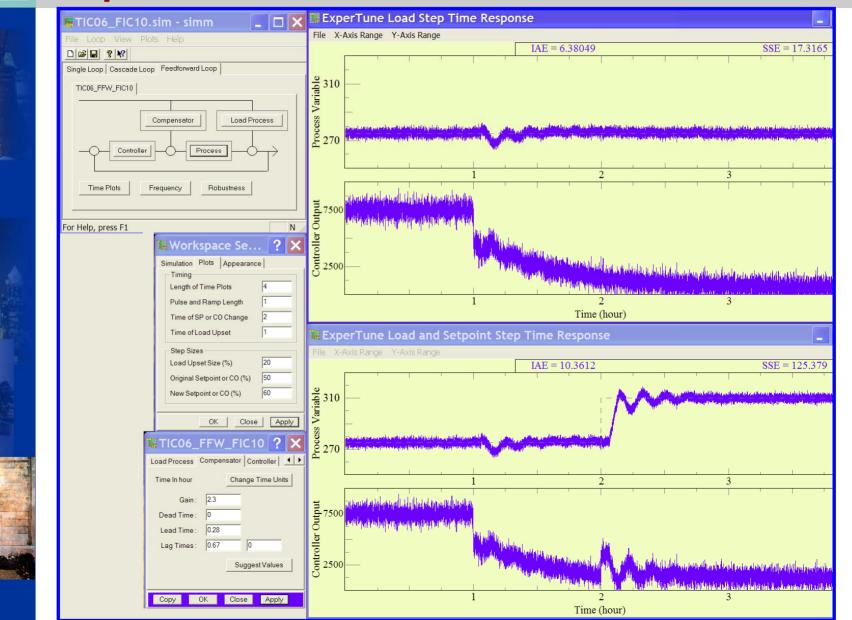
Feedforward Tuning Methodology (Cont'd)

Recommended Procedure (Cont'd)

- 1st pass feedforward tuning constant rule set
 - * Feedforward Gain = Load Disturbance Process Gain*/Controlled Variable Process Gain**
 - * Feedforward Lead = (1.3-1.5) x Controlled Variable 1st Order Process Time Constant**
 - Feedforward Lag = (1.1-1.3) x Load Disturbance 1st Order Process Time Constant*
 - Feedforward Delay = Load Disturbance Process Deadtime* - Controlled Variable Process Deadtime** (ignore if less than 0)


*Normalized effect of load disturbance variable (DV) change on primary process control var. (CV)

**Normalized effect of primary feedback controller manipulated variable (MV) move on primary process control var. (CV)


Simulated Feedback Only Temp. Ctl. Loop Performance – FIC10 20% Load Disturbance

IND-PRO-OPTO

INDUSTRIAL PROCESS OPTIMIZATION

IND-PRO-OPTO Simulated Combined FFD-FDBK Temp. Ctl. Loop Performance – FIC10 20% Load Disturb. INDUSTRIAL PROCESS

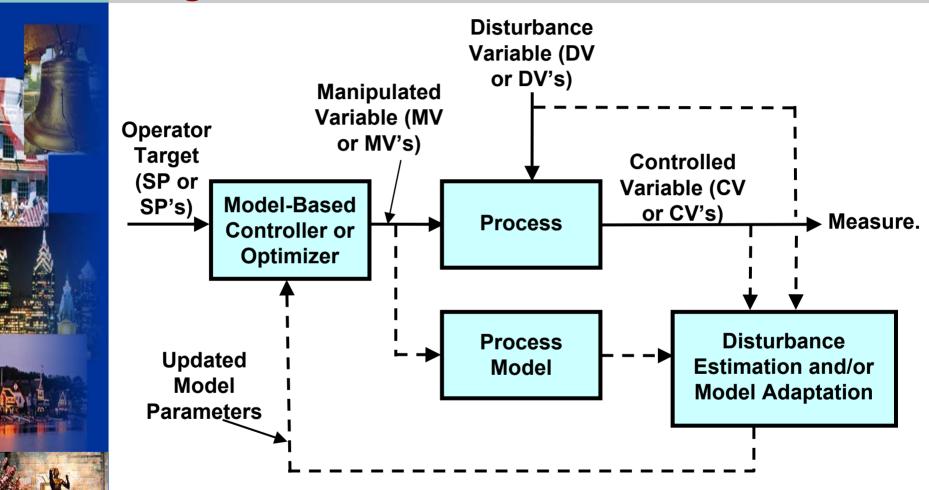
Example 1: Distillation Col. Combined Feedforward-Feedback Control Results

- Adding three combined feedforwardfeedback control loops with dynamic compensation achieved:
 - Routine solvent purification column operation within environmental emissions constraints
 - Substantially reduced solvent loss
 - Estimated savings:
 - * ~ \$100K/year in solvent recovery
 - Unestimated \$/year in avoidance of environmental emissions excursion fines

USTRIAL PROCESS

Model-Based Control

OPTIMIZATION

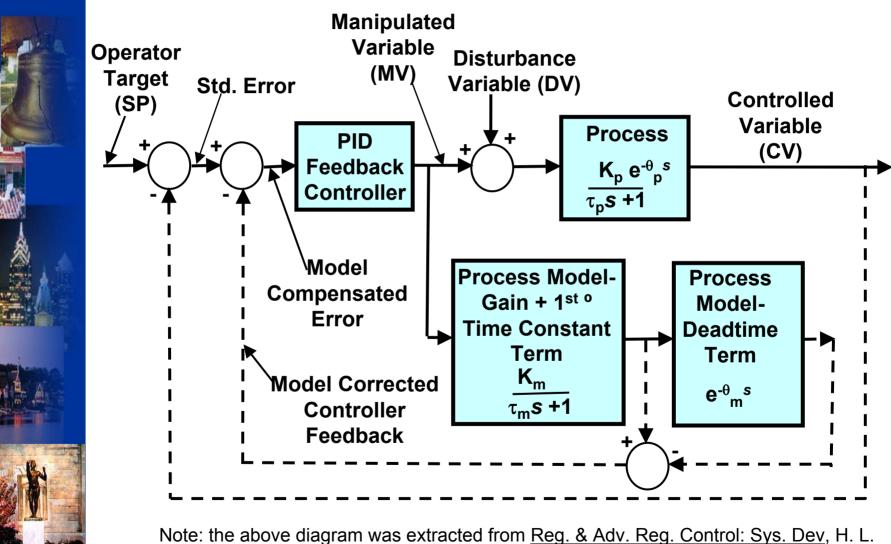

What is Model-Based Control?

 Embeds a process model in the control algorithm to better achieve the control objective

Some Model-Based Control Examples

- Internal Model Control
 Smith Predictor with PID Feedback Control
- Adaptive Model-Based Control Feedback Controller Tuning Constants Online Adjustment
- Adaptive Model-Based Control Process Model Parameters Online Adjustment
- Model Predictive Control
- Many Other Variants and Commercial Products...

Generic Model-Based Control Block Diagram

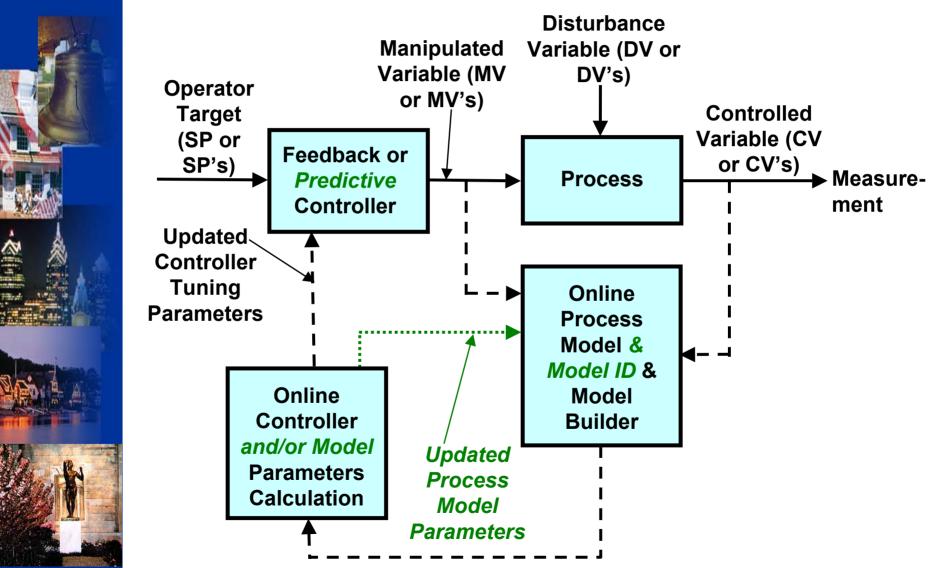


Note: the above diagram was extracted from <u>Techniques of Model-Based Control</u>, Brosilow & Joseph ©2002 Prentice-Hall, and was modified by the presenter.

IND-PRO-OPTO

INDUSTRIAL PROCESS

Smith Predictor with PID Feedback Control INDUSTRIAL PROCESS **Block Diagram**

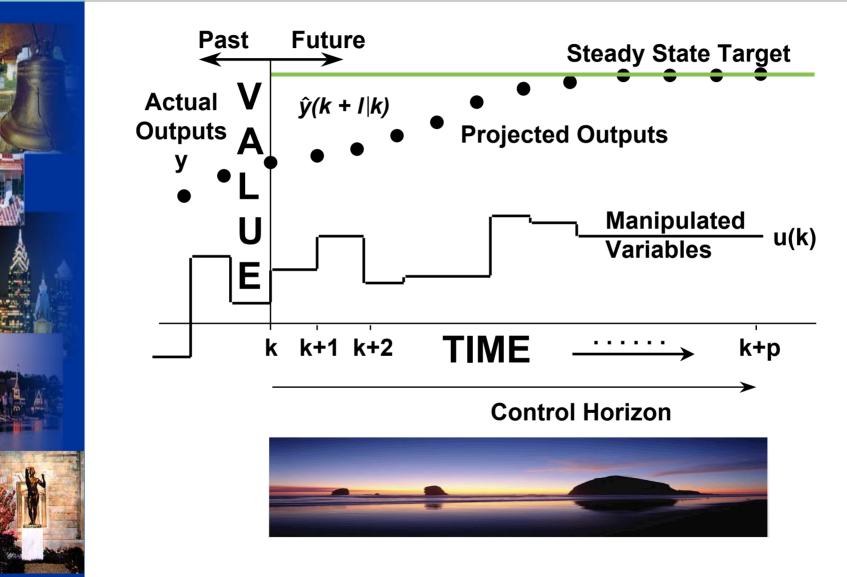


Wade ©1994 ISA and Fundamentals of Process Control Theory 3rd e., P. W. Merrill ©2000 ISA, and was modified by the presenter.

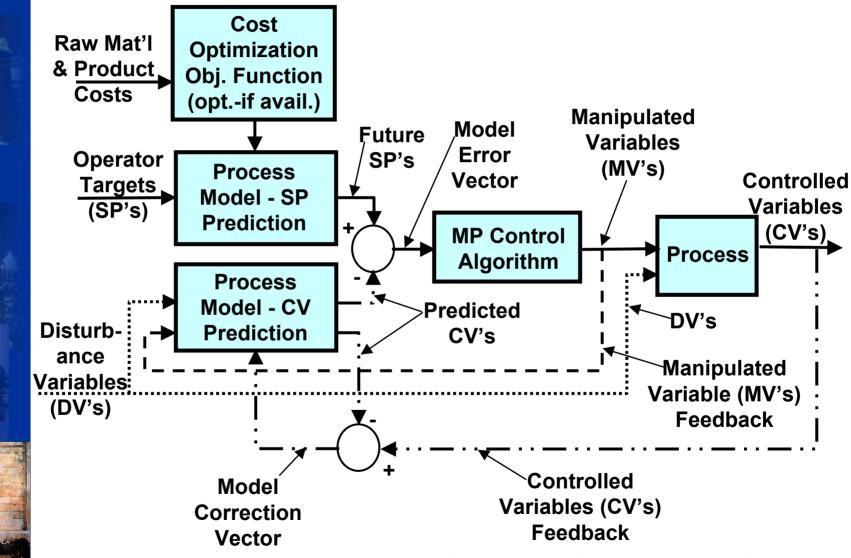
IND-PRO-OPTO

IND-PRO-OPTO

Generic Adaptive Model-Based Control Block Diagram



Note: descriptions in italics = capabilities of more sophisticated controllers


Model Predictive Control Definition and Features of Interest

- MPC- class of model-based control algorithms that compute a sequence of manipulated variable (MV) moves in order to optimize the future behavior of a plant
 - Solves control and optimization app mathematically online in real-time
 - Uses *linear* dynamic models to predict plant behavior (Feedforward)
 - Corrects for mismatch between actual plant behavior and model (Feedback)
 - May include operating constraints (constrained or unconstrained MPC)
 - May include dynamic cost optimization (objective) function

Generic Unconstrained Model Predictive Control Block Diagram

Note: the above diagram was extracted from <u>Advanced Control Unleashed</u>, G. K. McMillan et al ©2003 ISA, and was modified by the presenter.

IND-PRO-OPTO

INDUSTRIAL PROCESS

Model Predictive Control Advantages

- Controls complex multivariable processes and can handle:
 - Large plant controller-related variable set
 Typical example: 100 CV's/30 MV's/10 DV's
 - Interactive variable and integrating process dynamics
 - Long dead time and time constant processes
- Can (depending on ctlr cap.) perform real-time economic optimization
 - Optimum SP range vs. single SP for each CV
 - Includes raw material and product costs
- Achieves fastest plant production rate ramping

Model-Based & Adaptive Controller Suppliers

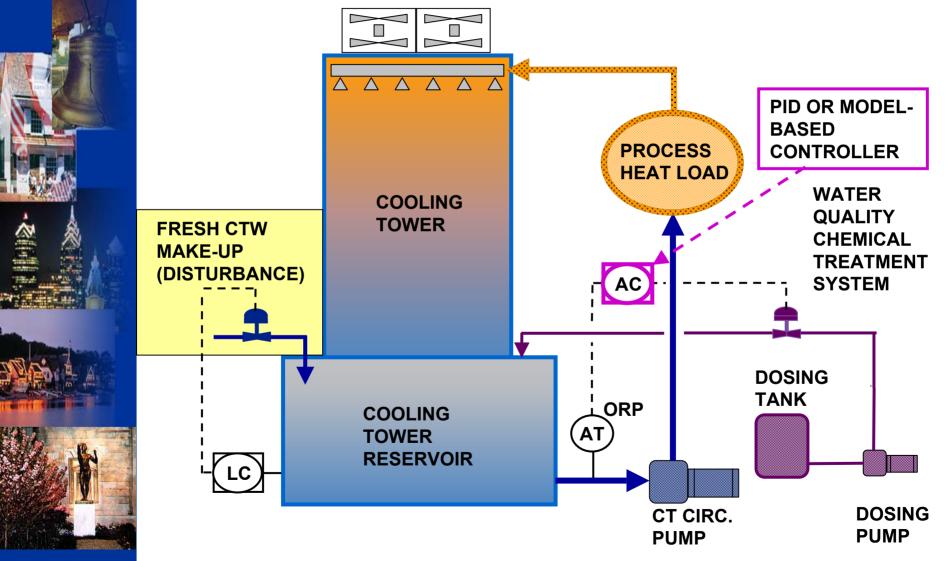
- Model-Based (Non-Adaptive) Controller Supplier
 - ControlSoft, Inc. MMC Modular Multivariable Ctlr (2/3/0/0)
 - http://www.controlsoftinc.com/mmc.shtml
- Adaptive Model-Based Controller Supplier
 - Universal Dynamics Technologies BrainWave[®] (1/1/3/0) + BrainWave[®] MultiMax (12/12/36/NA)

http://www.brainwave.com/product/product_index.html

- Adaptive "Model-Free" Controller Supplier
 - CyboSoft[™] (General Cybernation Group, Inc.)
 CyboCon (12/3/3/NA)
 - http://www.cybosoft.com/index.html

Note: (_/_/_) = controller capability for <u>CV's/MV's/DV's/AV's</u> (AV=constraint)

Model Predictive Controller Suppliers


Model Predictive Controller Suppliers

- Aspen Technology DMCplus[®] (100's/100's/etc.)
 <u>http://www.aspentech.com/</u>
- Emerson Proc. Auto. DeltaV[™] Predict (4/4/4/4)
 - http://www.easydeltav.com/
- Honeywell Profit[®] Robust Multivariable Predictive Controller (200/100/100/300)
 - http://www.acs.honeywell.com/ichome/
- Intelligent Optimization GMAXC[™] (40/25/10/40)
 - http://www.intellopt.com/GMAXC.htm
 - 3rd party S/W solution from Siemens Energy and Automation Div. for APACS+ systems

(http://www.sea.siemens.com/process/default.html)

Note: (_/_/_) = controller capability for <u>CV's/MV's/DV's/AV's</u> (AV=constraint)

Example 2: Cooling Tower Water Quality Composition Control Process Schematic

IND-PRO-OPTO

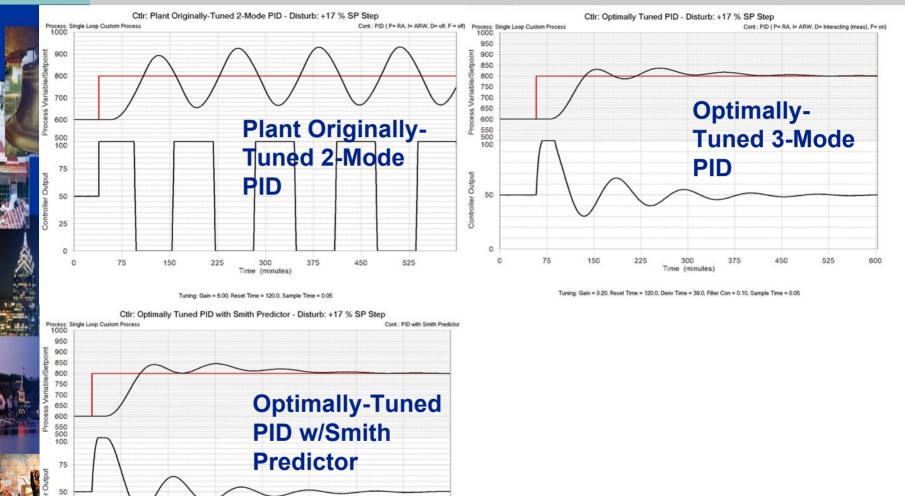
INDUSTRIAL PROCESS

IND-PRO-OPTO **Example 2: Cooling Tower Water Quality** INDUSTRIAL PROCESS **Composition Control – Process Identification** OPTIMIZATION **Open Loop Process Response Test Results** 52 913 **PROCESS RESPONSE OR EXPERTUNE IDENTIFIED & VALIDATED REACTION CURVE PROCESS MODEL: UNDERDAMPED*** PV 47.34 (%) - ORP PROCESS **PROCESS WITH A SERIES** VAR.'s RESPONSE INTEGRATOR. **TO BELOW CO** FOLPDT PROCESS GAIN = 0.24 **STEP CHANGE PROCESS DEADTIME = 12 MINS** SERIES INTEGRATOR TIME = 5 MINS 1500 2000 2500 **CONTROL OUTPUT (CO) STEP CHANGE** CO 87.75 (OPEN LOOP) **CO IS SENT TO A DOSING CHEMICAL ADDITION CONTROL VALVE** POSITIONER 1000 **THENGR UNITS (%** \Rightarrow TIME UNITS (secs) of PV or CO range)

*The Laplace polynomial equation used to model and simulate this underdamped process in the ExperTune Loop Simulator is: 1/(C0 + C1s + C2s² + C3s³): C0=4.2; C1=92; C2=670; C3=0.

IND-PRO-OPTO

Example 2: Cooling Tower Water Quality Composition Control – Process Model Dev. Simulated Process & Disturbance Models – Control Station


	🖬 Custom Process Input Form						m Process Input Form						
	Construct Process and Disturbance Models						Construct Process and Disturbance Models						
	Process Mode	el	(Disturbance Model	Zeros and Spans		Process Model	I	Disturbance	Model	Zero	s and Spans	
	Underdamped Linear Mod	el	-										
1	Non-Self Regulating (Integr	rating) Process	•										
				Laplace Domain	Time Domain		Controller Out	aut CO	Process Variable,	DV	Disturbance, D		
17				General Model Form			Controller Out	put co	Flocess valiable,	F V	Disturbance, D		
					ττ≢ζ () =θαδ		Minimum	0.0	Minimum 0.0		Minimum 0.0		
IIII.	Integrator Gain, Κ [*] Natural Period,τ _{P0}		PV/(CO time)	$PV = \frac{1}{s(\tau_n^2 s^2)}$	$\frac{K_{p}^{*}(\tau_{p_{L}}s+1)e^{-\theta_{p_{S}}}}{^{2}+2(\tau_{s}s+1)(\tau_{p_{3}}s+1)}CO$		Maximum Startup Value	100.0	Maximum 12 Startup Value 60		Maximum 1200 Startup Value 600.0		
	Naturai Period, τ _{Ph} Damping Factor, ζ _P	12.63	time units time units	× ~	, , , , , , , , , , , , , , , , , , ,		Stanup value	150.0	Signific Agine [60]	J.U	Statup value 600.	J	
Â	Time Constant, t _P	0.0011	time units	Current Process Model									
	Lead Time, TPL	5.00	time units		0.12(.10.0)								
12	Dead Time, Op	12.0	time units	$PV = \frac{1}{s(159)!}$	0.13exp(-12.0s) 52s ² + 21.9s+1)(5.00s+1) CO								
an Alagonia Marina		12.0		0(100%							Numerical	Solution Method	
	Custom Proces	c Input Ec	17170				ne	<u>C</u> ancel			Fast	Ac	curate
america.											1	ί ι	
	Construct Process and Disturbance Models		~		~								
	Process Mode		·	Disturbance Model	Zeros and Spans		-						
14	Overdamped Linear Mode	el	•										
- m				Laplace Domain	Time Domain								
				- ·	- Time Domain								
				General Model Form									
	Process Gain, K _P	1.50		DV -	$\frac{K_D(\tau_{DL} s + 1)e^{-\theta_D s}}{s + 1)(\tau_{D2} s + 1)(\tau_{D3} s + 1)} \mathbf{D}$								
518	First Time Constant, τ_{P1}	10.0	time units	$r v - \frac{1}{(\tau_{D1})}$	$(\tau_{D2} s + 1)(\tau_{D3} s + 1)$								
es P	Second Time Constant, τ_{P2}	2.00	time units										
	Third Time Constant, τ_{PS}	0.0	time units	Current Process Model									
	Lead Time, τ _{PL}	0.0	time units	D)(-	1.50exp(-13.0s) (10.0s+1)(2.00s+1) D								
	Dead Time,⊖p	13.0	time units	PV -	(10.0s+1)(2.00s+1)								
1005.45													
					Numerical Solution Method		-						
	Done	<u>C</u> ancel				Accurate							
	L				1 Y 1								

Example 2: Cooling Tower Water Quality Composition Control – Controller Dev. Simulated PID & Model-Based Controller – Control Station

🖬 Controller Design 🛛 🗙	Controller Design							
Controller: 🔽 Advanced T Basic	Controller: Advanced Basic PID with Smith Predictor ?	Process Model Disturb Model						
Sample Time (minimum = 0.05) 0.05 time units	Sample Time (minimum = 0.05) 0.05 time units	Process Gain, K _P 0.24						
Set Point 600.0	Set Point 600.0	First Time Constant, T _{P1} 18.0 time units						
Bias (null value) 50.0	Bias (null ∨alue) 50.0	Second Time Constant, TP2 0.0 time units						
Adaptive PID: off	Adaptive PID: off	Lead Time, τ _{PL} 0.0 time units						
ON: Proportional - Reverse Acting, Kc > 0	ON: Proportional - Reverse Acting, Kc > 0	Dead Time, Op 19.0 time units						
Controller Gain, Kc 0.20	Controller Gain, Kc 0.20							
ON: Integral with Anti-Reset Windup	ON: Integral with Anti-Reset Windup							
Reset Time, τ_1 120.0 time units	Reset Time, τ_1 120.0 time units	$PV = \frac{K_{P} (\tau_{PLS} + 1) \exp(-\theta_{PS})}{(\tau_{P1S} + 1) (\tau_{P2S} + 1)} CO$						
ON: Interacting	ON: Interacting	$(\tau_{P1S}+1)$ $(\tau_{P2S}+1)$						
Derivative Time, $\tau_{\rm D}$ 39.0 time units	Derivative Time, τ_0 39.0 time units	Current Process Model						
Derivative computed on Measurement 💌	Derivative computed on Measurement	$PV = \frac{0.24exp(-19.0s)}{(18.0cs+1)}CO$						
Derivative Filter Constant α 0.10 ON 💌	Derivative Filter Constant, α 0.10 ON \checkmark	(18.0s+1)						
		Preview New Process Model						
Alarm: High 1188 Low 12.0	Alarm: High 1188 Low 12.0							
Done Cancel	Done	Cancel						

IND-PRO-OPTO **Example 2: Cooling Tower Water Quality** Comp. Ctl Simulated Perform. – SP Step INDUSTRIAL PROCESS

300 Time (minutes) 375

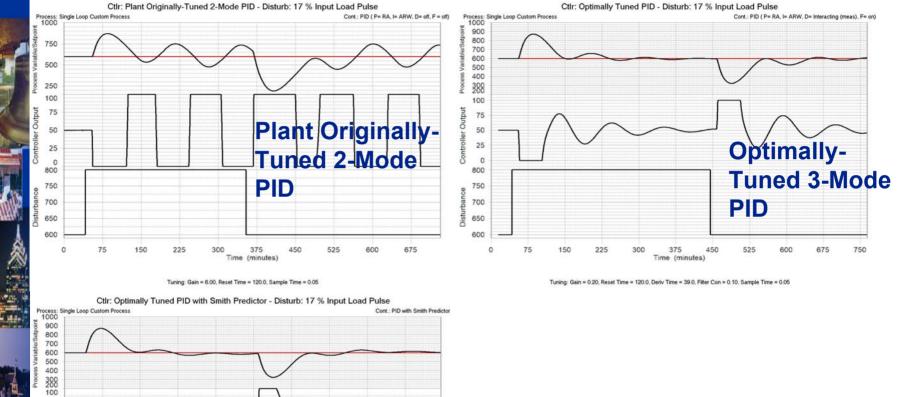
450

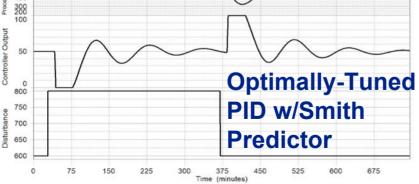
525

600

225

75


150


25

0

Tuning: Gain = 0.20. Reset Time = 120.0. Deriv Time = 39.0. Filter Con = 0.10. Sample Time = 0.05 Process Model: Gain(Kp) = 0.24, T1 = 18.0, T2 = 0.0, TL = 0.0, TD = 19.0

IND-PRO-OPTO **Example 2: Cooling Tower Water Quality Comp. Ctl Simulated Perform. – Load Pulse** INDUSTRIAL PROCESS

Tuning: Gain = 0.20. Reset Time = 120.0. Deriv Time = 39.0. Filter Con = 0.10. Sample Time = 0.05 Process Model: Gain(Kp) = 0.24, T1 = 18.0, T2 = 0.0, TL = 0.0, TD = 19.0

Example 2: Cooling Tower Water Quality Composition Control Results

- Optimal PID Control Tuning Results:
 - Retuned with step and pulse response testing using ExperTune
 - Retuned loop reduced average ORP Controlled Var. (CV) variance from +/- 20-45% before retuning to ~ average of +/- 5% after retuning
 - Estimated savings:
 - Avoidance of need to shut down the plant and manually chemically clean heat exchange equipment ~ once/year - \$100K
 - \$5K per year in reduced microbiocide usage

Summary

- Advanced Regulatory Control globally proven to provide major competitive advantage if properly applied and maintained
 - Combined Feedforward-Feedback control can minimize the negative impact of routine disturbances for high profit control loops
 - Model-Based and Model Predictive Control can handle difficult or complex applications where single loop feedback control is not adequate
 - These techniques have been successfully applied to greatly improve plant performance for many decades
- Very capable commercial tools are now available to facilitate the process of moving beyond single loop control