Batch Model Predictive Control - Use of ExperTune to Develop Models

David Leach

Associate Engineering Consultant Eli Lilly and Company

Common Sense Automation

Outline

 Model Predictive Control Intro. & Definitions

Batch Bioprocess MPC Project Overview

Common Sense Automation

What is Model Predictive Control?

Model Predictive Control (MPC)

- Most commercialized & economically successful form of model-based control
- -Uses *linear* dynamic models to predict plant behavior (Feedforward)
- -Combines Feedforward (primary) and Feedback (corrective) control with prediction to control plant based on models
- -Solves control and optimization application mathematically online in real-time
- -Relies heavily on matrix inversion and higher order math to solve control problem

Automation ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense

What is Model Predictive Control (Cont'd)?

- Model Predictive Control (MPC)
 - -Corrects for mismatch between actual plant behavior and model to varying degrees depending on ctlr design (Feedback aspect)
 - Real differences between comm. ctlrs
 - -May include operating constraint control (constrained vs. unconstrained MPC)
 - -May include one or more dynamic cost or economic optimization (objective) functions
 - Economic Optimization is most popular & moneymaking feature for many MPC apps.
 - -May include offline ctlr simulation cap.

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense Automation

Model Predictive Control Definitions

Definitions

- Controlled Var. = CV
 - Example = Bioreactor Temperature
- Manipulated Var. = MV
 - Example = Bioreactor Cooling Media Flow
- Disturbance Var. = **DV**
 - Example = Bioreactor Agitator Speed
- Constraint Var. = AV
 - Example = Bioreactor Temperature Limits
- Setpoint Var. = SP
 - Example = Bioreactor Temperature Setpoint

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense

Generic Unconstrained Model Predictive Control Block Diagram

Model Predictive Control - Indications

- Complex multivariable process
 - Irrespective of controller-related variable set size
- Large plant controller-related variable set
 - Typical example: >50 CV's >10 MV's >5 DV's >10 AV's
- >High degree of interaction between controlled and manipulated variables
- >Multiple disturbance inputs that affect final product spec. or quality
 - > = Drivers to use MPC for this project

Common Sense Automation ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Model Predictive Control -Indications (Cont'd)

- >High value or high \$ impact of
 - Products or Incremental production increase
 - Raw materials or utilities
 - Environmental constraint excursions
- >Difficult process dynamics
 - Long dead time and/or time constant processes
 - Integrating (non self-regulating) processes

> = Drivers to use MPC for this project

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense

Model Predictive Control -Contraindications Contraindications

- >>Rapidly changing or unstable or *nonlinear* process dynamics
- Changing/evolving process or equipment or instrumentation
- Poorly understood process or dynamics
- Inadequate resources available for plant testing and controller design & maintenance

>> = Drivers to NOT use MPC for this project

Common Sense Automation

Batch Bioprocess MPC Project -Introduction

What is It?

- Fundamentally changes Batch Bioprocess nutrient addition control strategy
- Optimizes Bioprocess production

Why Do It?

- Reduce raw material consumption
- Increase product yield

Common Sense Automation

Batch Bioprocess MPC Project -Introduction

Challenges

- Few published commercial Pharma Batch MPC applications
- Commercially available Process Identification Tools are not designed for Batch or Pharma applications
- Many Batch process variable input/output relationships are nonlinear and time-variant

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense

Batch Bioprocess MPC Project -Summary Objectives and Results

OBJECTIVES	RESULTS
Optimize media growth conditions	Achieved with Batch Product Profiles
Increase product yield	Partially Achieved
Reduce raw material usage	Fully Achieved
Reduce/eliminate dependency on online analytical instrumentation	Mostly Achieved
Common Sense Automation ExperTupe - TiPS User Conference	
Houston TX April 23-25, 2008	

Batch Bioprocess MPC Project – MPC Controller Development

Batch Bioprocess Pre-Existing Nutrient Control Control Strategy

Batch Bioprocess MPC Nutrient Control Control Strategy

Batch Bioprocess MPC Project - Plant Test Considerations

Plant (Process Response) Testing

- Plant Testing Built into Recipe Phase Logic
 - Purified Air and Nutrient Flow Controllers set to Auto mode at Recipe-specified Plant Test Mode Initiation Time
 - Automated (PRBS) Testing Performed Using DCS MPC Identification Software
 - Repeated at various key batch times after property transitions
 - Multiple simul. MV testing used to determine overall Time-to-Steady State (TSS)

Common

Batch Bioprocess MPC Project - Plant Test Considerations

Plant (Process Response) Testing (Cont'd)

- Purified Air and Nutrient Flow Controllers Manipulated

- Manually-initiated Step and Pulse Testing used to develop I/O Response Models
 - ExperTune Advanced vers. OPC Tuner Collected Data in Parallel with DCS Historian (Redundancy desired)
 - Uncompressed Historian data collected by DCS was exported to ExperTune ASCII Tuner

 ExperTune ASCII Tuner used to determine individual I/O pair process model constants

> Common Sense Automation

Batch Bioprocess MPC Project Overview - Plant Test Plan

Determined from Plant Testing

- Process type for each input-output relationship (i.e., integrating or self-regulating)^{*&**}
- Time-to-Steady State (TSS) for slowest inputoutput relationship*
- MV + DV > CV Input-Output relationships and non-linearity as batch progresses assessment**
- Input-output relationship anomalies and model discontinuities***
 - No insurmountable "MPC Killers"
 - Verified by offline simulation testing

*DCS Model ID Pkg. **ExperTune ASCII Tuner ***DCS MPC Simulator

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense Automation

Batch Bioprocess MPC Project - Plant Testing Techniques

Plant Testing & Model ID Techniques

- PRBS (Pseudo-Random Binary Sequencing)
 - Advantages
 - Most Widely Accepted Automated MPC Testing Technique for <u>Continuous</u> Processes
 - Integral feature of DCS MPC Testing & Identification Software
 - Disadvantages
 - DCS requires estimate of Time-to-Steady State (TSS) upfront before beginning testing
 - DCS MP Controller must be fully configured for plant testing incl. all controller var. types (CV's, MV's, DV's, AV's)

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Sense Automation

Batch Bioprocess MPC Project - Plant Testing Techniques

Plant Testing & Model ID Techniques (Cont'd)

- PRBS (Pseudo-Random Binary Sequencing)
 - PRBS testing simultaneously moving multiple MV's used to determine Time-to-Steady State (TSS)
 - DCS MPC ID Pkg. could not properly identify individual process models from PRBS testing
 - ExperTune ASCII Tuner Adv. Vers. used to identify process models from testing

Common Sense Automation

Batch Bioprocess MPC Project - Plant Testing Techniques

Plant Testing & Model ID Techniques (Cont'd)

- Manually-Actuated Asymmetrical Sequential Doublet Pulses
 - DCS MPC ID Pkg. could not identify most individual process models
 - ExperTune ASCII Tuner Adv. Vers. used to identify process models from testing
 MV SETPOINT

Common Sense Automation

Batch Bioprocess MPC Project - Process Model Identification Techniques

Houston, TX April 23-25, 2008

Batch Bioprocess MPC Project - Process Model Identification Techniques (Cont'd)

Houston, TX April 23-25, 2008

Batch Bioprocess MPC Project Overview – Process Response Models

Batch Bioprocess MPC Project -Nutrient Conc. Control Results

01/04/07 03:52:00 : 22.90

Houston, TX April 23-25, 2008

Batch Bioprocess MPC Project -Nutrient MP Control Results

Batch Bioprocess MPC Project Summary

Results Summary

- Pharma Batch MP Controller Models Developed using DCS + ExperTune Tuner Tools
- MPC models tested offline using DCS MPC Simulator
- MP controller fully implemented within DCS
- Developmental control strategy tested on Production-scale Bioreactor
- Model Predictive control proven to meet project objectives

ExperTune - TiPS User Conference Houston, TX April 23-25, 2008

Common Sense Automation